- Moreover, given the global nature of the market, leading suppliers of silver titanium dioxide understand the importance of efficient logistics and distribution networks
Recent analyses of food-grade TiO2 samples have found that a significant portion of particles may be within the nanoscale. These particles (also known as nanoparticles) range in size from 1 to 100 nm, where 1 nm equals 1 billionth of a metre (the width of a typical human hair is 80,000 to 100,000 nm).
- Mixed crystal nano titania, a revolutionary materialMixed crystal nano titania, a revolutionary materialtechnology, has been has been gaining significant attention due to its unique properties and potential applications. This innovative substance is composed of titanium dioxide (TiO2) nanoparticles that are mixed with other materials to create a composite structure. The resulting material exhibits enhanced optical, electronic, and catalytic properties, making it an ideal candidate for various industrial and technological applications.
With the rise of nanotechnology, research in recent years has also shown the dangers of titanium dioxide (TiO2) nanoparticles, and their genotoxicity, which refers to a chemical agent’s ability to harm or damage DNA in cells, thus potentially causing cancer.
What is titanium dioxide? Why is it used in food products?
- With the continuous improvement of people's living standards and the increasing awareness of environmental protection, the application prospects of titanium dioxide powder are becoming increasingly broad. It is believed that in the future, titanium dioxide powder factories will continue to play an important role in promoting economic development and improving people's lives.
Recent policy changes in regard to titanium dioxide
Micronized titanium dioxide doesn’t penetrate skin so there’s no need to be concerned about it getting into your body. Even when titanium dioxide nanoparticles are used, the molecular size of the substance used to coat the nanoparticles is large enough to prevent them from penetrating beyond the uppermost layers of skin. This means you’re getting the sun protection titanium dioxide provides with no risk of it causing harm to skin or your body. The coating process improves application, enhances sun protection, and prevents the titanium dioxide from interacting with other ingredients in the presence of sunlight, thus enhancing its stability. It not only makes this ingredient much more pleasant to use for sunscreen, but also improves efficacy and eliminates safety concerns. Common examples of ingredients used to coat titanium dioxide are alumina, dimethicone, silica, and trimethoxy capryl silane.
- In conclusion, titanium dioxide gravimetric analysis is a valuable tool for industries that rely on accurate measurements of the compound. By following a few simple steps, the percentage of titanium dioxide in a sample can be determined with a high degree of accuracy. This information is essential for maintaining product quality and meeting regulatory requirements.
Research supports that applying titanium dioxide to the skin in the form of sunscreens, makeup, and other topical products does not pose any health risks.

A review published in 2022 in the journal NanoImpact evaluated the latest research related to genotoxic effects of titanium dioxide through in vivo studies and in vitro cell tests. Researchers summarized the results by stating TiO2 nanoparticles “could induce genotoxicity prior to cytotoxicity,” and “are likely to be genotoxic to humans.”
In their role as risk managers, the European Commission and Member States will now reflect on EFSA’s scientific advice and decide upon any appropriate regulatory measures or advice for consumers.
In a small study published in the European Journal of Nutrition in 2020, researchers examined the effects of several food additives, including titanium dioxide, along with artificial sweeteners and cleaning products by testing the fecal samples of 13 people. Titanium dioxide was among the samples that “induced significant shifts in microbiome community structure.” The growth of the bacterium species belonging to C. leptum, which has been shown to decrease in patients with inflammatory bowel disease, “significantly decreased in the presence of … titanium dioxide” among other additives and sweeteners tested.
How can I tell if a product has titanium dioxide in it? How can I avoid the ingredient?
Titanium dioxide manufacturer: Lomon
Hemolysis was studied on suspensions of P25TiO2NPs (0.2 mg/mL and 0.02 mg/mL), vitaminB2@P25TiO2NPs (0.2 mg/mL and 0.02 mg/mL) and vitamin B2 (0.2 mg/mL and 0.02 mg/mL) were prepared and mixed with 500 μL of anticoagulated blood (donated by Laboratorio de Hemoderivados, UNC) in a rate of 1/10. A solution of NaCl 10% was used as the positive control and PBS as the negative control. Then, the samples were irradiated using the LED described above for 3 and 6 h to simulate the light penetration into the skin. Also, a set of samples was kept in the dark as control. Finally, the samples were centrifuged and the absorbance at 540 nm was measured in the supernatants. The experiment was reproduced twice; the standard deviation was calculated and p-value < 0.05 were considered significant.
When manufacturers add titanium dioxide to foods and other ingestible products, it’s typically referred to as E171, which relates to food-grade purity.