\]
- In addition to its use as a pigment, titanium dioxide is also utilized in photocatalysis. When exposed to light, it can facilitate reactions that break down organic compounds, which makes it useful for environmental cleanup efforts such as water and air purification. This property has led to its inclusion in self-cleaning surfaces and even in the development of certain types of solar cells.
Asia
Market Dynamics
While the FDA maintains that the regulated use of titanium dioxide is safe, the European Food Safety Authority and some other experts warn of potential, serious health risks.
Titanium dioxide can amplify and brighten white opacity because of its exceptional light-scattering properties. In food and drugs, these properties help to define colors clearly and can prevent products from UV degradation.
The conventional surface treatment methods of titanium alloy include glow discharge plasma deposition, oxygen ion implantation, hydrogen peroxide treatment, thermal oxidation, sol-gel method, anodic oxidation, microarc oxidation, laser alloying, and pulsed laser deposition. These methods have different characteristics and are applied in different fields. Glow discharge plasma deposition can get a clean surface, and the thickness of the oxide film obtained is 2 nm to 150 nm [2–8]. The oxide film obtained from oxygen ion implantation is thicker, about several microns [9–14]. Hydrogen peroxide treatment of titanium alloy surface is a process of chemical dissolution and oxidation [15, 16]. The dense part of the oxide film is less than 5 nm [17–21]. The oxide film generated from the thermal oxidation method has a porous structure, and its thickness is commonly about 10-20 μm [22–25]. The oxide film from the sol-gel method is rich in Ti-OH, a composition that could induce apatite nucleation and improve the combining of implants and bone. It has a thickness of less than 10 μm [26–28]. Applied with the anodic oxidation method, the surface can generate a porous oxide film of 10 μm to 20 μm thickness [29–31]. Similarly, the oxide film generated from the microarc oxidation method is also porous and has a thickness of 10 μm to 20 μm [32, 33].


tio2 used in paper supplier. TiO2 has the ability to absorb and reflect harmful ultraviolet (UV) radiation, which can cause paper to yellow and degrade over time. By incorporating TiO2 into paper products, paper suppliers can enhance their durability and longevity, ensuring that they remain looking fresh and vibrant for longer periods. This is particularly important for archival papers and documents that need to be preserved for generations.
In 2017, the Scientific Committee on Consumer Safety (SCCS) warned that they should revise their recommendations if any new evidence emerges in the future related to the potentially harmful effects of TiO2NPs used in a sunscreen formulation or if they can penetrate the skin. In fact, our work could contribute to this matter because it evaluated the skin penetration of a particular kind of TiO2NPs. [8]
Are there any other products where you use titanium dioxide?
But before titanium dioxide is made into sunscreens, it is first micronized. This is a process that takes ingredients that are normally quite heavy (like titanium dioxide) and makes them both stabler and easier to spread. And when micronized, titanium dioxide doesn’t penetrate the skin. That means that you’re getting all the sun protection benefits without the risk of harming yourself.
In Home Care products, the presence of titanium dioxide is declared in line with local regulations, which can vary across the world. In some countries, titanium dioxide is not declared if only a small amount of the ingredient is used. In other countries titanium dioxide is grouped under ‘colourants’ in the ingredients list. In Europe, regulation requires all home care ingredients to be disclosed through a supporting website. You can find our product ingredient information page by visiting ‘
This TiO2 manufacturer mainly produces R5566, R5567, R5568, R5569 and other series products, which are used in coatings, plastics, papermaking, ink and other fields.
In food, titanium dioxide is often used as an artificial color additive. Tasha Stoiber, senior scientist at the consumer health nonprofit Environmental Working Group, says titanium dioxide can generally be thought of as a paint primer – it often goes on a hard-shelled candy like Skittles before the color is added to give it a uniform shine.
R-996 titanium dioxide, white powder, insoluble in water, non-physiological toxicity, chemically stable, with excellent weather resistance and anti-powdering ability.

It’s particularly useful in sunscreen as it has impressive UV resistance and helps block the sun’s UVA and UVB rays from reaching your skin (6Trusted Source).
Although barium sulfate is almost completely inert, zinc sulfide degrades upon exposure to UV light, leading to darkening of the pigment. The severity of this UV reaction is dependent on a combination of two factors; how much zinc sulfide makes up the pigments formulation, and its total accumulated UV exposure. Depending on these factors Lithopone B301, Lithopone B311 powder itself may vary in shade over time, ranging from pure white all the way to grey or even black. To suppress this effect, a dopant might be used, like small amount of cobalt salts, which would be added to the formulation. This process creates cobalt-doped zinc sulfide. The cobalt salts help to stabilize zinc sulfide so it will not have as severe a reaction to UV exposure.
105°C volatile matter, %
However, since it’s photosensitive — meaning it can stimulate free radical production — it’s usually coated in silica or alumina to prevent potential cell damage without reducing its UV-protective properties (7Trusted Source).
Skittles has been making headlines in recent weeks and not because a new flavor has been added to the popular taste the rainbow candy.
The FDA has issued guidance clarifying the safe use of titanium dioxide pigment as a food colorant and has stated that titanium dioxide may be safely used in cosmetics, including those intended for use around the eye. FDA also regulates the safety and effectiveness of sunscreen active ingredients, including nanoscale titanium dioxide.
After conducting a review of all the relevant available scientific evidence, EFSA concluded that a concern for genotoxicity of TiO2 particles cannot be ruled out. Based on this concern, EFSA’s experts no longer consider titanium dioxide safe when used as a food additive. This means that an Acceptable Daily Intake (ADI ) cannot be established for E171.

