- High-Purity Methacrylate Copolymer (HPMC) has emerged as an essential ingredient in the construction industry, particularly for skim coat applications. A skim coat, often referred to as a leveling compound, is a thin layer of material applied to walls and floors to create a smooth, even surface prior to painting or tiling. The role of HPMC in this process cannot be overstated, as it significantly influences the performance and durability of the final finish.
- In the world of construction and home improvement, gypsum plaster has been a staple for centuries. It's known for its ease of application, smooth finish, and ability to create fire-resistant surfaces. However, the introduction of Hydroxypropyl Methylcellulose (HPMC) into the formulation of gypsum plasters has revolutionized the industry by enhancing both the process and outcome of plastering projects.
- In the personal care industry, HEC is widely used as a thickener and emulsifier. It is commonly found in hair care products such as shampoos, conditioners, and styling gels due to its ability to create a thick, creamy texture without leaving a sticky residue. HEC also helps to stabilize emulsions in skin care products, preventing the separation of oil and water-based ingredients.
(6) Vegetarian and Vegan Recipes:
Hydroxypropyl methylcellulose is derived from plants, making it a suitable ingredient in vegetarian and vegan vitamin formulas. It can serve as an alternative to animal-derived capsule materials and cater to a wider consumer base.(2) Ceramic manufacturing industry: widely used as adhesives in the manufacture of ceramic products.h after hardening.
- CAS (Chemical Abstracts Service) numbers are unique identifiers assigned to chemical substances, enabling accurate information retrieval in scientific research and databases. The CAS number 9004-62-0 specifically denotes hydroxyethyl cellulose, which is derived from cellulose, a natural polymer abundant in plant cell walls. The '9004' segment of the CAS number signifies that HEC falls under the category of Polymers and Resins, while the following digits '62-0' are unique to this particular compound.
Pharmaceuticals:



As soon as a product is labeled as vegetarian or vegan, consumers immediately get the impression that there’s something inherently good or natural about it, or that it’s somehow better for their health. However, the recent discussions about vegetarian meat substitutes have shown that this is not necessarily true. Such is the case for HPMC hard capsules. They’re vegan, made from cellulose fiber and therefore regarded as natural.




Data on chronic toxicity and carcinogenicity are available for microcrystalline cellulose (E 460), methyl cellulose (E 461) hydroxypropyl cellulose (E 463), HPMC (E 464) and sodium carboxymethyl cellulose (E 466). Some studies were unfit for evaluation due to methodological shortcomings. In the only relevant study, the dietary administration of even high doses of microcrystalline cellulose (E 460) (30%, 15,000 mg/kg bw) to rats for 72 weeks did not affect survival, feed efficiency or haematology. Apart from some dystrophic calcification in renal tubules, no other relevant lesions were noted and tumour incidence did not differ with that of controls. Several studies were conducted in rats with methyl cellulose (E 461) via feed or drinking water or by gavage at concentrations up to 5% (2,500 mg methyl cellulose/kg bw per day) and for up to 2 years. For all examined parameters, no adverse effects were reported and also the observed tumours did not differ in type and number in treated and control groups. In the only identified study, the daily dosing of male and female rats (0, 1,500, 3,000 or 6,000 mg hydroxypropyl cellulose/kg bw) via gavage for 6 months did not cause adverse effects (including carcinogenicity) apart from a decrease in body weight in high-dosed rats (statistically significant in females only). Apart from a decrease in body weights of high-dosed males, no other significant adverse findings were reported and there was no indication of a carcinogenic effect in rats of either sex dietary exposed to HPMC (E 464) up to 20% (10,000 mg/kg bw per day) for 1 year. Carboxy methylcellulose (E 466) was tested in mice and rats at dosages of 0, 10,000 or 100,000 mg/kg diet (equivalent to 0, 1,500 or 15,000 mg/kg bw per day for mice and to 0, 500 or 5,000 mg/kg bw per day for rats) for up to 104 weeks. Despite the increase in feed intake, a treatment related decrease in body weight was noted at the end of the treatment. Histological examination revealed no intestinal abnormality or evidence of the passage of the additive across the intestinal wall in either species and the tumour incidences were comparable among groups.
In the world of nutritional supplements and pharmaceuticals, innovation plays a crucial role in developing safe and effective products that meet the needs of a broad audience. One of the notable innovations in these industries has been the use of Hydroxypropyl Methylcellulose (HPMC). This versatile substance was a game-changer not only because of its functional benefits, but also because it offers a plant-based alternative that fits various lifestyles, including those of vegetarians and vegans.
In this blog we will delve deeper into what exactly HPMC is, why it is increasingly used instead of traditional binding agents such as gelatin, and how it contributes to the safety and quality of nutritional supplements. We will also discuss HPMC's approval and safety profile, supported by regulatory authorities and scientific studies, to highlight why consumers can confidently choose products containing this substance.
In ophthalmology it is used due to its good wetting properties, excellent tissue and endothelium protection, efficient volume replacement and quick removal. Specifically, it can be used to wet the cornea during cataract, corneal or retinal procedures.


Applications