A few non-dietary studies have reported adverse effects in the gastrointestinal tract of laboratory animals given food-grade TiO2. However, these same effects were not seen when the same or higher doses of food-grade TiO2 were administered in the animals' diet. Dietary studies best reflect how humans are exposed to TiO2 from food. Thus, the Food Directorate placed the most emphasis on the results of these studies in the state of the science report.
Product Name: Lithopone
Notes on contributors
Titanium Dioxide (TiO2) is a commonly used white pigment in paints due to its excellent whiteness, brightness, and weather resistance. It is also known for its ability to absorb ultraviolet light, which can help protect paint from fading and yellowing caused by sunlight. When TiO2 is used in paint, it is typically ground into a fine powder and then mixed with the other ingredients to create the final paint product. The amount of TiO2 used in paint can vary depending on the desired level of whiteness and opacity. In general, paints that are designed for outdoor use, such as exterior house paint, will contain higher levels of TiO2 than paints that are intended for indoor use. One of the main advantages of using TiO2 in paint is its ability to provide a durable and long-lasting finish. This is because TiO2 is very resistant to weathering and does not easily break down or fade when exposed to the elements. As a result, paints that contain TiO2 can provide excellent protection against the effects of sunlight, rain, and other environmental factors. Another advantage of TiO2 is its low cost compared to other pigments. This makes it an attractive option for manufacturers who want to produce high-quality paint at an affordable price This makes it an attractive option for manufacturers who want to produce high-quality paint at an affordable price This makes it an attractive option for manufacturers who want to produce high-quality paint at an affordable price This makes it an attractive option for manufacturers who want to produce high-quality paint at an affordable price
tio2 used in paint. However, the cost of TiO2 can vary depending on factors such as the quality of the raw material and the production process. In recent years, there has been some concern about the potential health risks associated with exposure to TiO2 dust. While studies have shown that TiO2 is generally considered safe for human contact, there is still some debate about the long-term effects of inhaling TiO2 particles. As a result, many manufacturers are now looking for alternative pigments that can provide similar levels of performance without the same health risks. Overall, Titanium Dioxide is a versatile and widely used pigment in the paint industry. Its ability to provide a durable and long-lasting finish, coupled with its low cost, make it an attractive option for manufacturers and consumers alike. However, as concerns about health risks continue to be studied, it is likely that we will see more research into alternative pigments that can provide similar benefits without the same potential health risks.

Potential hazards of oral exposure to TiO2 NPs
≥99.0
Main products are titanium dioxide LR-982, titanium dioxide LR-108, titanium dioxide LR-996, LR-895 and other products.
FDA’s response
North America
2. Mentality: the buyer has to prepare goods in advance, and the new order price is slightly less willing to purchase in bulk; Because the seller's inventory is small, the manufacturer has no willingness to reduce the price of sales.Trend: The load of titanium dioxide enterprises is stable, the willingness to ship at low prices is not strong, and the downstream buyers place orders in the early stage to establish inventory, and the short-term supplementary orders after the holiday are less. Anatase titanium dioxide due to the overall volume of the market supply side is less, the space for quotation negotiation is small, and the focus of new orders will move up. It is expected that the titanium dioxide market today just needs to be closed, and the market trading atmosphere is relatively light.
As mentioned above, these oxide NPs are harmful in part because both anatase and rutile forms are semiconductors and produce ROS. Particularly, P25 kind has band-gap energies estimated of 3.2 and 3.0 eV, equivalent to radiation wavelengths of approximately 388 and 414 nm, respectively. Irradiation at these wavelengths or below produces a separation of charge, resulting in a hole in the valence band and a free electron in the conduction band, due to the electron movement from the valence to conduction bands. These hole–electron pairs generate ROS when they interact with H2O or O2 [43,44]. It was described that they can cause an increase in ROS levels after exposure to UV-visible light [45]. The NBT assay in the studied samples showed that bare P25TiO2NPs produce a large amount of ROS, which is drastically reduced by functionalization with vitamin B2 (Fig. 5). This vitamin, also known as riboflavin, was discovered in 1872 as a yellow fluorescent pigment, [46] but its function as an essential vitamin for humans was established more than sixty years later, and its antioxidant capacity was not studied until the end of the XX century [47,48]. This antioxidant role in cells is partially explained because the glutathione reductase enzyme (GR) requires it for good functionality. This enzyme is the one in charge of the conversion of oxidized glutathione to its reduced form which acts as a powerful inner antioxidant and can quench the ROS [49,50]. The cost of this action is that the glutathione is converted to the oxidized form and needs to be recovered by the GR. Consequently, the cells need more vitamin B2. Another glutathione action is the protection against hydroperoxide. This activity is also mediated by riboflavin. Therefore, local delivery of this vitamin seems to significantly help the cells in their fight to keep the oxidative balance, once they are exposed to high levels of ROS.
Barium sulfide is produced by carbothermic reduction of barium sulfate. Zinc sulfate is obtained from a variety of zinc products, often waste, by treatment with sulfuric acid.
For years scientists have raised concerns about the potential toxicity of titanium dioxide.
When E171 is part of a food product, it passes through the digestive system without causing harm because E171 combines with the other ingredients.