

Titanium dioxide (TiO2) is a chemically inert inorganic compound and an insoluble white solid that occurs naturally in several minerals, including rutile, anatase, and brookite. It is created synthetically from the mineral ilmenite. It is an insoluble white solid. Anatase, when compared to brookite and routine, has the most industrial applications, but it is the most toxic form of TiO2.
Lithopone was discovered in the 1870s by DuPont. It was manufactured by Krebs Pigments and Chemical Company and other companies. The material came in different seals, which varied in the content of zinc sulfide. Gold seal and Bronze seals contain 40-50% zinc sulfide, offering more hiding power and strength. Although its popularity peaked around 1920, approximately 223,352 tons were produced in 1990. It is mainly used in paints, putty, and in plastics.
The report also provides detailed information related to the lithopone manufacturing process flow and various unit operations involved in a manufacturing plant. Furthermore, information related to mass balance and raw material requirements has also been provided in the report with a list of necessary quality assurance criteria and technical tests.
The principal natural source of titanium dioxide is mined ilmenite ore, which contains 45-60 percent TiO2. From this, or an enriched derivative (known as titanium slag), pure TiO2 can be produced using the sulphate or chloride process.
In recent years, environmental concerns have shaped the way lithopone is produced and used. Suppliers are now more attentive to the sustainability aspect of their operations, ensuring that lithopone is sourced from eco-friendly processes. Many suppliers have adopted responsible mining practices and have invested in technologies that reduce waste and emissions during production. This shift not only appeals to environmentally-conscious consumers but also helps manufacturers comply with stringent regulations regarding product safety and environmental impact.
Le produit obtenu par cette méthode est constitué de 29,4 % en masse de ZnS et 70,6 % en masse de BaSO4. Il existe des variations, par exemple l'adjonction de chlorure de zinc à la pâte avant chauffage produit un pigment plus riche en ZnS3.
Aside from its use in paints, coatings, plastics, and paper, TiO2 is also utilized in a variety of other industrial applications. It is commonly found in cosmetics, sunscreens, and food products, where it serves as a safe and effective whitening agent. TiO2 is also used in the production of ceramics, glass, and textiles, where it enhances their appearance, durability, and resistance to fading.