Titanium dioxide is one of the many oxides formed naturally in our environment. Manufacturers source this mined mineral from rutile, brookite, and anatase. It is then processed and refined to meet stringent safety guidelines based on the end-use for the mineral.
Fig. 5. ROS values (Abs of NBT) in samples of MSSA treated with A: 0.2 mg/mL P25TiO2NPs; B: 0.02 mg/mL P25TiO2NPs; C: 0.2 mg/mL VitaminB2@P25TiO2NPs; D: 0.02 mg/mL VitaminB2@P25TiO2NPs after 3 h of irradiation (red) and 6 h (blue). SD < 0.20 and p < 0.05 between C-D and A-B.
With the rise of nanotechnology, research in recent years has also shown the dangers of titanium dioxide (TiO2) nanoparticles, and their genotoxicity, which refers to a chemical agent’s ability to harm or damage DNA in cells, thus potentially causing cancer.

Titanium dioxide can be both safe and unsafe, depending on its use. When inhaled, titanium dioxide is considered possibly carcinogenic to humans. This means that in products that contain powdered titanium dioxide like loose powders, pressed powders, eyeshadows, and blushes in which the makeup is in powder form, titanium dioxide can be inhaled. Titanium dioxide is also an occupational chemical of concern, as workers might inhale titanium dioxide when manufacturing products.
North America

Titanium dioxide (E 171) is authorised as a food additive in the EU according to Annex II of Regulation (EC) No 1333/2008.
Titanium dioxide (TiO2) is by far the most suited white pigment to obtain whiteness and hiding power in coatings, inks and plastics. This is because it has an extremely high refractive index and it does not absorb visible light. TiO2 is also readily available as particles with the right size (d ≈ 280 nm) and the right shape (more or less spherical) as well as with a variety of post-treatments.
However, the pigment is expensive, especially when the volume prices of systems are used. And, there always remains a need to develop a full-proof strategy to obtain the best results in terms of cost/performance ratio, scattering efficiency, dispersion… while using it in coating formulations. Are you searching for the same?
Explore the detailed knowledge of TiO2 pigment, its scattering efficiency, optimization, selection, etc. to achieve the best possible white color strength and hiding power in your formulations.

It is suitable as an alternative to titanium dioxide when higher acid resistance is required, such as in adhesive joints and sealants.
2. Cosmetics
In a 2020 study published in the Journal of Trace Elements in Medicine and Biology, researchers conducted an in vitro experiment to analyze the effects of TiO2 nanoparticles on a human neuroblastoma (SH-SY5Y) cell line. The scientists evaluated “reactive oxygen species (ROS) generation, apoptosis, cellular antioxidant response, endoplasmic reticulum stress and autophagy.” The results showed that exposure to the nanoparticles “induced ROS generation in a dose dependent manner, with values reaching up to 10 fold those of controls. Nrf2 nuclear localization and autophagy also increased in a dose dependent manner. Apoptosis increased by 4- to 10-fold compared to the control group, depending on the dose employed.”
Our scientific experts applied for the first time the 2018 EFSA Scientific Committee Guidance on Nanotechnology to the safety assessment of food additives. Titanium dioxide E 171 contains at most 50% of particles in the nano range (i.e. less than 100 nanometres) to which consumers may be exposed.
Applications:


Titanium dioxide, a versatile and widely used material, finds its application in various industries including the rubber industry. This white pigment is known for its excellent UV resistance, durability, and opacity, making it an ideal choice for enhancing the properties of rubber products.