- The factory's production process is a testament to precision and optimization. Raw materials, primarily ilmenite, rutile, and anatase ores, undergo a rigorous refining process that includes crushing, leaching, and solvent extraction methods. These steps ensure the purity and consistency required for high-quality pigments. Following this, gaseous chlorination converts the refined ore into titanium tetrachloride, setting the stage for the final synthesis of titanium dioxide through the oxidation of titanium tetrachloride in a heated environment.
The evidence also suggests that the toxicity of TiO2 particles may be reduced when eaten as part of the diet. This is because proteins and other molecules in a person's diet can bind to the TiO2 particles. This binding alters the physical and chemical properties of the particles, which influences how they interact with cells, tissues and organs.
This precipitate is not suitable for a pigment until it is filtered, dried, crushed, heated to a high temperature, and quenched in cold water. The second heating in a muffle furnace at 725 C produces crystals of the right optical size.
- One significant advantage of TiO2 in coatings is its ability to scatter light effectively, which enhances the hiding power and gloss of the paint. It allows for better coverage, reducing the amount of coating needed and ultimately saving costs. Moreover, TiO2's photocatalytic properties can break down organic pollutants under sunlight, making it environmentally friendly and contributing to cleaner air Moreover, TiO2's photocatalytic properties can break down organic pollutants under sunlight, making it environmentally friendly and contributing to cleaner air
Moreover, TiO2's photocatalytic properties can break down organic pollutants under sunlight, making it environmentally friendly and contributing to cleaner air Moreover, TiO2's photocatalytic properties can break down organic pollutants under sunlight, making it environmentally friendly and contributing to cleaner air
titanium dioxide in coatings factory.
- Avoid titanium dioxide in powdered cosmetics, including loose and pressed powders, eyeshadows, and blush.
In general, nanoparticles have been shown to accumulate in the body, particularly in organs in the gastrointestinal tract, along with the liver, spleen, and capillaries of the lungs.


Titanium dioxide is typically micronized and coated for use in cosmetics products. The micronizing makes this somewhat heavy-feeling ingredient easier to spread on skin, plus a bit more cosmetically elegant. Micronized titanium dioxide is much more stable and can provide better sun protection than non-micronized titanium dioxide.
Titanium dioxide (TiO2) is renowned for its brightness, high refractive index, and stability. It comes in two primary crystalline forms rutile and anatase. Rutile is predominantly used in the production of tires due to its superior characteristics, including high UV resistance, durability, and excellent pigmentary properties. These features make TiO2 an ideal choice for enhancing the performance and longevity of tire products.
Recently, Yanagisawa et al. reported that the transdermal exposure (mimicking skin-barrier dysfunction or defect) of NC/Nga mice to TiO2 NPs (15, 50, or 100 nm), in combination with allergen, aggravated atopic dermatitis-like lesions through a T-helper type 2 (Th2) dominant immune response. The study also indicated that TiO2 NPs can play a role in the initiation and/or progression of skin diseases, since histamine was released, even in the absence of allergen.


Going Public
In 1970, Japanese scholars studied the phase diagram of iron oxide microcrystalline formation, which laid a theoretical foundation for the preparation method of iron oxide yellow crystal seed. According to the research results, iron yellow crystal seeds can be formed under acidic or alkaline conditions. Because iron yellow is a crystal structure, in order to crystallize into pigment particles, it must first form crystal nucleus and become crystal seed, and then the crystal nucleus grows into iron yellow. Otherwise, only thin and dim color paste can be obtained, which does not have pigment properties. Acid process can be divided into iron sheet process and drop addition process.
Titanium dioxide R-996 is mainly used in powder coatings, water-based and solvent-based external coatings, high-grade color masterbatches, plastics, rubber, inks, high-grade paper and wax paper and leather upholstery fabrics, cosmetics, suitable for high-grade interior coatings, high-solid paints, Road marking paints, marine paints and inks, and also used in the plastics, rubber, paper and leather industries.
Titanium Dioxide Description
Total zinc and barium sulphate
100% Min
Lithopone is a white pigment composed of a mixture of barium sulfate (BaSO4) and zinc sulfide (ZnS). It is commonly used in the production of paints, plastics, rubber, and various other industrial applications. As such, manufacturers and distributors often provide Material Safety Data Sheets (MSDS) to ensure the safe handling and use of the product.